Part Number Hot Search : 
RHEF800 31BSN MT352 AK4665A 1675230 VB30120C 15WBS MV8G0X
Product Description
Full Text Search
 

To Download 10-PY12NMA080SH-M427FY Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  10-fy12nma080sh-m427f 10-PY12NMA080SH-M427FY preliminary datasheet flowmnpc 1 1200v/80a mixed voltage npc topology reactive power capability low inductance layout split output common collector neutral connection solar inverter ups active frontend 10-fy12nma080sh-m427f 10-PY12NMA080SH-M427FY tj=25c, unless otherwise specified parameter symbol value unit repetitive peak reverse voltage v rrm t j =25c 1200 v t h =80c 12 t c =80c 17 t h =80c 27 t c =80c 42 maximum junction temperature tjmax 150 c halfbridge igbt t h =80c 62 t c =80c 80 t h =80c 133 t c =80c 201 t sc t j 150c 10 s v cc v ge =15v 800 v tp=10ms p tot maximum junction temperature halfbridge igbt inverse diode dc forward current repetitive peak forward current a w 175 1200 20 maximum junction temperature power dissipation per igbt v ge t j max p tot short circuit ratings gate-emitter peak voltage c v w a a a maximum ratings i f i frm condition t j =t j max features flow0 12mm housing 14 collector-emitter break down voltage repetitive peak collector current dc collector current v ds i dpulse i d v 240 t j =t j max t p limited by t j max schematic target applications types t j =t j max copyright by vincotech 1 revision: 1
10-fy12nma080sh-m427f 10-PY12NMA080SH-M427FY preliminary datasheet tj=25c, unless otherwise specified parameter symbol value unit maximum ratings condition np diode t h =80c 50 t c =80c 67 t h =80c 61 t c =80c 92 np igbt t h =80c 51 t c =80c 71 t h =80c 76 t c =80c 116 t sc t j 150c 6 s v cc v ge =15v 360 v np inverse diode t h =80c 19 t c =80c 25 t h =80c 29 t c =80c 44 halfbridge diode t h =80c 31 t c =80c 41 t h =80c 62 t c =80c 94 20 1200 t j =t j max t p limited by t j max 200 power dissipation per diode p tot t j =t j max 185 peak repetitive reverse voltage c maximum junction temperature t j max 175 v rrm 1200 dc forward current a t j =t j max t p limited by t j max a i f t c =100c 120 i frm repetitive peak forward current peak repetitive reverse voltage t j max power dissipation per diode p tot t j =t j max i c dc forward current i f repetitive peak forward current i frm v rrm v ge i f t j =t j max t j max p tot t j =25c w a w v c v a peak repetitive reverse voltage repetitive peak forward current i frm a a t j =t j max t p limited by t j max 600 30 v w 175 maximum junction temperature c short circuit ratings dc collector current power dissipation per igbt collector-emitter break down voltage repetitive peak collector current gate-emitter peak voltage v ce i cpuls v a 600 225 t p limited by t j max v c w a maximum junction temperature t j max 175 t c =25c v rrm dc forward current p tot power dissipation per diode t j =t j max maximum junction temperature t j =t j max t j =25c copyright by vincotech 2 revision: 1
10-fy12nma080sh-m427f 10-PY12NMA080SH-M427FY preliminary datasheet tj=25c, unless otherwise specified parameter symbol value unit maximum ratings condition dc link capacitor thermal properties insulation properties v is t=2s dc voltage 4000 v min 12,7 mm min 12,7 mm cti >200 tc=25c max.dc voltage v max 630 c storage temperature t stg -40?+125 c -40?+(tjmax - 25) t op operation temperature under switching condition v comparative tracking index clearance insulation voltage creepage distance copyright by vincotech 3 revision: 1
10-fy12nma080sh-m427f 10-py12nma080sh-m427f y preliminary datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max t j =25c 2,03 t j =125c 1,67 t j =25c 1,35 t j =125c 1,00 t j =25c 0,10 t j =125c 0,10 t j =25c 0,25 t j =125c thermal resistance chip to heatsink per chip r thjh 2,55 thermal resistance chip to case per chip r thjc 1,68 t j =25c 5,2 5,8 6,4 t j =150c t j =25c 1,7 2,05 2,4 t j =150c 2,37 t j =25c 0,01 t j =150c t j =25c 240 t j =150c t j =25c 125 t j =150c 127 t j =25c 23 t j =150c 26 t j =25c 215 t j =150c 271 t j =25c 38 t j =150c 72 t j =25c 0,97 t j =150c 1,64 t j =25c 1,28 t j =150c 2,00 t j =25c t j =150c t j =25c t j =150c t j =25c t j =150c t j =25c t j =150c *additional value stands for built-in capacitor t j =25c 1,97 2,74 t j =150c 1,46 t j =25c 38 t j =150c 56 t j =25c 30 t j =150c 118 t j =25c 0,83 t j =150c 2,73 di ( rec ) max t j =25c 4124 /dt t j =150c 2769 t j =25c 0,10 t j =150c 0,41 thermal resistance chip to heatsink per chip r thjh 1,56 thermal resistance chip to case per chip r thjc 1,03 thermal resistance chip to case per chip r thjc q gate r thjh 15 15 350 50 na ns v ? a v ma none turn-off energy loss per pulse reverse transfer capacitance input capacitance gate charge output capacitance 15 reverse recovery time thermal grease thickness 50um = 1 w/mk 1200 0,0015 c mws 80 0 20 1200 0 e off c rrs t d(off) t f e on 15 reverse recovered charge integrated gate resistor halfbridge igbt gate emitter threshold voltage turn-off delay time gate-emitter leakage current a/ s k/w i r reverse current v v ? ma 7 k/w halfbridge igbt inverse diode 7 7 characteristic values forward voltage threshold voltage (for power loss calc. only) slope resistance (for power loss calc. only) v f v to r t value conditions collector-emitter cut-off current incl. diode collector-emitter saturation voltage v ge(th) v ce(sat) turn-on energy loss per pulse fall time rise time turn-on delay time diode forward voltage thermal resistance chip to heatsink per chip erec i rrm v f peak reverse recovery current np diode peak rate of fall of recovery current reverse recovered energy t r c oos t rr i ces r gint i ges v ce =v ge rgon=8 ? thermal grease thickness 50um = 1 w/mk q rr 50 350 50 v 370 0,71 nc k/w 0,47 t d(on) 4600 ns mws pf rgoff=8 ? rgon=8 ? 270 c ies 300 f=1mhz 0 25 960 80 thermal grease thickness 50um = 1 w/mk copyright by vincotech 4 revision: 1
10-fy12nma080sh-m427f 10-py12nma080sh-m427f y preliminary datasheet parameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max characteristic values value conditions t j =25c 5 5,8 6,5 t j =150c t j =25c 1,05 1,45 1,85 t j =150c 1,60 t j =25c 0,0038 t j =150c t j =25c 600 t j =150c t j =25c 145 t j =150c 151 t j =25c 22 t j =150c 24 t j =25c 212 t j =150c 250 t j =25c 151 t j =150c 119 t j =25c 1,12 t j =150c 1,39 t j =25c 1,71 t j =150c 2,32 thermal resistance chip to heatsink per chip r thjh 1,25 thermal resistance chip to case per chip r thjc 0,82 t j =25c 1,3 1,6 2,0 tj=125c 1,5 thermal resistance chip to heatsink per chip r thjh 3,24 thermal resistance chip to case per chip r thjc 2,14 t j =25c 2,49 1,68 t j =150c 3,02 t j =25c 50 t j =150c t j =25c 52 t j =150c 61 t j =25c 52 t j =150c 286 t j =25c 3,26 t j =150c 6,56 di ( rec ) max t j =25c 1921 /dt t j =150c 4562 t j =25c 0,75 t j =150c 1,72 thermal resistance chip to heatsink per chip r thjh 1,54 thermal resistance chip to case per chip r thjc 1,02 3950 3996 22000 470 b k k tj=25c vincotech ntc reference b-value b (25/100) tol. 3% tj=25c tj=25c b-value b (25/50) tol. 3% 137 288 none 4620 tj=25c tj=25c tc=100c tj=25c 600 600 350 25 350 50 60 20 15 15 thermal grease thickness 50um = 1 w/mk diode forward voltage rgon=8 ? rgoff=8 ? t rr i rrm thermistor c value dc link capacitor c reverse leakage current v f i r reverse recovery energy peak reverse recovery current q rr e rec reverse recovery time peak rate of fall of recovery current reverse recovered charge na v v 0,0012 0 v ce =v ge f=1mhz thermal grease thickness 50um = 1 w/mk 15 rgon=8 ? r/r r100=1486 ? rated resistance r power dissipation constant deviation of r25 power dissipation p mw 200 75 mw/k ns mws 0 ? thermal grease thickness 50um = 1 w/mk 15 480 15 halfbridge diode diode forward voltage v f np inverse diode gate charge q gate t d(off) t r t d(on) 0 e on e off t f gate emitter threshold voltage v ge(th) rise time integrated gate resistor i ces v ce(sat) r gint i ges turn-off energy loss per pulse turn-on delay time turn-on energy loss per pulse np igbt gate-emitter leakage current fall time turn-off delay time collector-emitter saturation voltage collector-emitter cut-off incl diode input capacitance output capacitance c rss c oss c ies reverse transfer capacitance 50 75 +5 % nf 100 ? k/w mws c v a/ s a v a ns k/w pf nc k/w ma tj=25c 2 -5 copyright by vincotech 5 revision: 1
10-fy12nma080sh-m427f 10-py12nma080sh-m427f y preliminary datasheet figure 1 igbt figure 2 igbt typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 125 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 igbt figure 4 fwd typical transfer characteristics typical fwd forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v t j = 25/125 c t j = 25/125 c half bridge typical output characteristics 0 50 100 150 200 250 300 350 0123456 v ce (v) i c (a) 0 15 30 45 60 75 90 024681 01 2 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 50 100 150 200 250 01234 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 50 100 150 200 250 300 350 0123456 v ce (v) i c (a) c opyright by vincotech 6 revision: 1
10-fy12nma080sh-m427f 10-py12nma080sh-m427f y preliminary datasheet figure 5 igbt figure 6 igbt typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 8 ? i c = 50 a r goff = 8 ? figure 7 fwd figure 8 fwd typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c )e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 8 ? i c = 50 a half bridge half bridge igbt and np fwd e on high t e off high t e on low t e off low t 0 1 2 3 4 0 2 04 06 08 01 0 0 i c (a) e (mws) e off high t e off low t 0 1 2 3 4 0 10203040 r g ( ? ) e (mws) e on low t e on high t e rec high t e rec low t 0 0,1 0,2 0,3 0,4 0,5 0,6 0 2 04 06 08 01 0 0 i c (a) e (mws) e rec high t e rec low t 0 0,1 0,2 0,3 0,4 0,5 0,6 0 1 02 03 04 0 r g ( ? ) e (mws) c opyright by vincotech 7 revision: 1
10-fy12nma080sh-m427f 10-py12nma080sh-m427f y preliminary datasheet figure 9 igbt figure 10 igbt typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 125 c t j = 125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 8 ? i c = 50 a r goff = 8 ? figure 11 fwd figure 12 fwd typical reverse recovery time as a typical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(ic) t rr = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 50 a r gon = 8 ? v ge = 15 v half bridge igbt and np fwd half bridge t doff t f t don t r 0,00 0,01 0,10 1,00 0 20406080100 i c (a) t (ms) t rr high t t rr low t 0,00 0,05 0,10 0,15 0,20 0,25 0 10203040 r gon ( ? ) t rr (ms) t doff t f t don t r 0,00 0,01 0,10 1,00 0 10203040 r g ( ? ) t (ms) t rr high t t rr low t 0,00 0,05 0,10 0,15 0,20 0 20406080100 i c (a) t rr (ms) c opyright by vincotech 8 revision: 1
10-fy12nma080sh-m427f 10-py12nma080sh-m427f y preliminary datasheet figure 13 fwd figure 14 fwd typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of jfet turn on gate resistor q rr = f(i c )q rr = f(r gon ) at at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 50 a r gon = 8 ? v ge = 15 v figure 15 fwd figure 16 fwd typical reverse recovery current as a typical reverse recovery current as a function of collector current function of jfet turn on gate resistor i rrm = f(i c )i rrm = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 50 a r gon = 8 ? v ge = 15 v half bridge i rrm high t i rrm low t 0 25 50 75 100 125 0 10203040 r gon ( ? ) i rrm (a) q rr high t q rr low t 0 1 2 3 4 010203040 r gon ( ) q rr (mc) i rrm high t i rrm low t 0 10 20 30 40 50 60 0 20406080100 i c (a) i rrm (a) q rr high t q rr low t 0 1 2 3 4 5 0 20406080100 i c (a) q rr (mc) c opyright by vincotech 9 revision: 1
10-fy12nma080sh-m427f 10-py12nma080sh-m427f y preliminary datasheet figure 17 fwd figure 18 fwd typical rate of fall of forward typical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of jfet turn on gate resistor di 0 /dt,di rec /dt = f(ic) di 0 /dt,di rec /dt = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 50 a r gon = 8 ? v ge = 15 v figure 19 igbt figure 20 fwd jfet transient thermal impedance f wd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p )z thjh = f(t p ) at at d = t p / t d = t p / t r thjh = 0,71 k/w r thjh = 1,56 k/w jfet thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) tau (s) 0,11 2,9e+00 0,07 5,9e+00 0,23 6,9e-01 0,19 1,1e+00 0,22 2,5e-01 0,65 2,3e-01 0,08 6,2e-02 0,39 7,4e-02 0,06 1,7e-02 0,16 1,4e-02 0,02 2,5e-03 0,10 2,1e-03 half bridge t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -3 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -3 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di 0 /dt t di rec /dt t 0 3000 6000 9000 12000 15000 010203040 r gon ( ? ) di rec / dt (a/ms) di 0 /dt t di rec /dt t 0 1000 2000 3000 4000 5000 0 20406080100 i c (a) di rec / dt (a/ms) c opyright by vincotech 10 revision: 1
10-fy12nma080sh-m427f 10-py12nma080sh-m427f y preliminary datasheet figure 21 igbt figure 22 igbt power dissipation as a collector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i c = f(t h ) at at t j = 175 c t j = 175 c v ge = 15 v figure 23 fwd figure 24 fwd power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 175 c t j = 175 c half bridge 0 50 100 150 200 250 0 50 100 150 200 t h ( o c) p tot (w) 0 20 40 60 80 100 0 50 100 150 200 t h ( o c) i c (a) 0 20 40 60 80 100 120 0 50 100 150 200 t h ( o c) p tot (w) 0 20 40 60 80 0 50 100 150 200 t h ( o c) i f (a) c opyright by vincotech 11 revision: 1
10-fy12nma080sh-m427f 10-py12nma080sh-m427f y preliminary datasheet figure 25 igbt figure 26 igbt safe operating area as a function gate voltage vs gate charge of collector-emitter voltage i c = f(v ce )v ge = f(q g ) at at d = single pulse i d = 20 a th = 80 oc v ds = 600 v v ge = 0 v t j = 25 oc t j =t jmax oc figure 27 igbt reverse bias safe operating area i c = f(v ce ) at t j =t jmax -25 oc u ccminus =u ccplus switching mode : 3 level switching half bridge v ce (v) i c (a) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 100us 1ms 10ms 100ms dc 10 0 10 3 0 2 4 6 8 10 12 14 16 0 50 100 150 200 q g (nc) v ge (v) 240v 960v 0 25 50 75 100 125 150 0 200 400 600 800 1000 1200 1400 v ce (v) i c (a) i c max v ce ma x i c module i c chip c opyright by vincotech 12 revision: 1
10-fy12nma080sh-m427f 10-py12nma080sh-m427f y preliminary datasheet figure 1 np igbt figure 2 np igbt typical output characteristics typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 250 s t p = 250 s t j = 25 c t j = 150 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 np igbt figure 4 fwd typical transfer characteristics typical fwd forward current as i c = f(v ge ) a function of forward voltage i f = f(v f ) at at t p = 250 s t p = 250 s v ce = 10 v t j = 25/125 c t j = 25/125 c np igbt neutral point igbt and half bridge fwd 0 50 100 150 200 250 300 012345 v ce (v) i c (a) 0 15 30 45 60 75 024681012 v ge (v) i c (a) t j = 25c t j = t jmax -25c 0 20 40 60 80 100 120 01234 v f (v) i f (a) t j = 25c t j = t jmax -25c 0 50 100 150 200 250 300 012345 v ce (v) i c (a) c opyright by vincotech 13 revision: 1
10-fy12nma080sh-m427f 10-py12nma080sh-m427f y preliminary datasheet figure 5 np igbt figure 6 np igbt typical switching energy losses typical switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 8 ? i c = 50 a r goff = 8 ? figure 7 fwd figure 8 fwd typical reverse recovery energy loss typical reverse recovery energy loss as a function of collector current as a function of gate resistor e rec = f(i c )e rec = f(r g ) with an inductive load at with an inductive load at t j = 25/125 c t j = 25/125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 8 ? i c = 50 a np igbt neutral point igbt and half bridge fwd e rec high t e rec low t 0,0 0,5 1,0 1,5 2,0 2,5 0 2 04 06 08 01 0 0 i c (a) e (mws) e rec high t e rec low t 0,0 0,5 1,0 1,5 2,0 2,5 0 1 02 03 04 0 r g ( ) e (mws) e off high t e on high t e on low t e off low t 0 1 2 3 4 0 20406080100 i c (a) e (mws) e off high t e on high t e on low t e off low t 0 1 2 3 4 0 10203040 r g ( ) e (mws) c opyright by vincotech 14 revision: 1
10-fy12nma080sh-m427f 10-py12nma080sh-m427f y preliminary datasheet figure 9 np igbt figure 10 np igbt typical switching times as a typical switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) with an inductive load at with an inductive load at t j = 125 c t j = 125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 8 ? i c = 50 a r goff = 8 ? figure 11 fwd figure 12 fwd typical reverse recovery time as a typical reverse recovery time as a function of collector current function of igbt turn on gate resistor t rr = f(ic) t rr = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 50 a r gon = 8,0 ? v ge = 15 v np igbt neutral point igbt and half bridge fwd t doff t f t don t r 0,001 0,01 0,1 1 0 20406080100 i c (a) t ( s) t doff t f t r t don 0,001 0,01 0,1 1 0 10203040 r g ( ) t ( s) t rr high t t rr low t 0 0,2 0,4 0,6 0,8 0 1 02 03 04 0 r gon ( ? ) t rr (ms) t rr high t t rr low t 0,0 0,1 0,2 0,3 0,4 0 2 04 06 08 01 0 0 i c (a) t rr (ms) c opyright by vinc otech 15 revision: 1
10-fy12nma080sh-m427f 10-py12nma080sh-m427f y preliminary datasheet figure 13 fwd figure 14 fwd typical reverse recovery charge as a typical reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c )q rr = f(r gon ) at at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 50 a r gon = 8,0 ? v ge = 15 v figure 15 fwd figure 16 fwd typical reverse recovery current as a typical reverse recovery current as a function of collector current function of igbt turn on gate resistor i rrm = f(i c )i rrm = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 50 a r gon = 8,0 ? v ge = 15 v np igbt neutral point igbt and half bridge fwd i rrm high t i rrm low t 0 20 40 60 80 100 120 0 10203040 r gon ( ? ) i rrm (a) q rr high t q rr low t 0 2 4 6 8 0 10203040 r gon ( ) q rr (mc) i rrm high t i rrm low t 0 20 40 60 80 100 0 20406080100 i c (a) i rrm (a) q rr high t q rr low t 0 2 4 6 8 10 0 20406080100 i c (a) q rr (mc) c opyright by vincotech 16 revision: 1
10-fy12nma080sh-m427f 10-py12nma080sh-m427f y preliminary datasheet figure 17 fwd figure 18 fwd typical rate of fall of forward typical rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(ic) di 0 /dt,di rec /dt = f(r gon ) at at t j = 25/125 c t j = 25/125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 50 a r gon = 8,0 ? v ge = 15 v figure 19 np igbt figure 20 fwd igbt transient thermal impedance f wd transient thermal impedance as a function of pulse width as a function of pulse width z thjh = f(t p )z thjh = f(t p ) at at d = tp / t d = tp / t r thjh = 1,25 k/w r thjh = 1,54 k/w igbt thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) tau (s) 0,13 4,53 0,20 7,23 0,28 1,03 0,36 1,40 0,48 0,25 0,33 0,34 0,20 0,07 0,28 0,08 0,13 0,02 0,20 0,02 np igbt neutral point igbt and half bridge fwd t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -3 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 t p (s) z thjh (k/w) 10 1 10 0 10 -1 10 -2 10 -3 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 di rec /dt t di 0 /dt t 0 2000 4000 6000 8000 10000 010203040 r gon ( ? ) di rec / dt (a/ms) di rec /dt t di o /dt t 0 1000 2000 3000 4000 5000 6000 0 20406080100 i c (a) di rec / dt (a/ms) c opyright by vincotech 17 revision: 1
10-fy12nma080sh-m427f 10-py12nma080sh-m427f y preliminary datasheet figure 21 np igbt figure 22 np igbt power dissipation as a collector current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i c = f(t h ) at at t j = 175 oc t j = 175 oc v ge = 15 v figure 23 fwd figure 24 fwd power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 175 oc t j = 175 oc neutral point igbt and half bridge fwd np igbt 0 30 60 90 120 150 0 50 100 150 200 t h ( o c) p tot (w) 0 20 40 60 80 100 0 50 100 150 200 t h ( o c) i c (a) 0 20 40 60 80 100 120 0 50 100 150 200 th ( o c) p tot (w) 0 10 20 30 40 50 0 50 100 150 200 th ( o c) i f (a) c opyright by vincotech 18 revision: 1
10-fy12nma080sh-m427f 10-py12nma080sh-m427f y preliminary datasheet figure 25 np igbt reverse bias safe operating area i c = f(v ce ) at t j =t jmax -25 oc u ccminus =u ccplus switching mode : 3 level switching neutral point igbt np igbt 0 200 400 600 800 1000 1200 1400 0 100 200 300 400 500 600 700 v ce (v) i c (a) i c max v ce max i c module ic chip c opyright by vincotech 19 revision: 1
10-fy12nma080sh-m427f 10-py12nma080sh-m427f y preliminary datasheet figure 25 np inverse diode figure 26 np inverse diode typical fwd forward current as fwd transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t p = 250 s d = tp / t r thjh = 3,24 k/w figure 27 np inverse diode figure 28 np inverse diode power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 175 oc t j = 175 oc np igbt inverse diode 0 10 20 30 40 50 60 70 0 0,5 1 1,5 2 2,5 3 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 10 20 30 40 50 60 0 50 100 150 200 th ( o c) p tot (w) 0 5 10 15 20 25 30 0 50 100 150 200 th ( o c) i f (a) c opyright by vincotech 20 revision: 1
10-fy12nma080sh-m427f 10-py12nma080sh-m427f y preliminary datasheet figure 1 halfbridge jfet inverse diode figure 2 halfbridge jfet inverse diode typical fwd forward current as fwd transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t p = 250 sd = t p / t r thjh = 2,548 k/w figure 3 halfbridge jfet inverse diode figure 4 halfbridge jfet inverse diode power dissipation as a forward current as a function of heatsink temperature function of heatsink temperature p tot = f(t h )i f = f(t h ) at at t j = 150 oc t j = 150 oc half bridge inverse diode 0 5 10 15 20 25 30 35 01234 v f (v) i f (a) t j = 25c t j = t jmax -25c t p (s) z thjc (k/w) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 1 10 -5 d = 0,5 0,2 0,1 0,05 0,02 0,01 0,005 0.000 0 10 20 30 40 50 60 0 50 100 150 200 t h ( o c) p tot (w) 0 5 10 15 20 25 0 50 100 150 200 t h ( o c) i f (a) c opyright by vincotech 21 revision: 1
10-fy12nma080sh-m427f 10-py12nma080sh-m427f y preliminary datasheet figure 1 thermistor typical ntc characteristic as a function of temperature r t = f(t) thermistor ntc-typical temperature characteristic 0 4000 8000 12000 16000 20000 24000 25 50 75 100 125 t (c) r/ ? c opyright by vincotech 22 revision: 1
10-fy12nma080sh-m427f 10-py12nma080sh-m427f y preliminary datasheet t j 125 c r g on 8 ? r goff 8 ? figure 1 half bridge igbt figure 2 half bridge igbt turn-off switching waveforms & definition of t dof f , t eof f turn-on switching waveforms & definition of t don , t eon (t eof f = integrating time for e of f )( t eon = integrating time for e on ) v ge (0%) = -15 v v ge (0%) = -15 v v ge (100%) = 15 v v ge (100%) = 15 v v c (100%) = 700 v v c (100%) = 700 v i c (100%) = 50 a i c (100%) = 50 a t doff = 0,27 s t don = 0,13 s t eoff = 0,61 s t eon = 0,28 s figure 3 half bridge igbt figure 4 half bridge igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 700 v v c (100%) = 700 v i c (100%) = 50 a i c (100%) = 50 a t f = 0,07 s t r = 0,03 s switching definitions half bridge igbt general conditions = = = i c 1% v ce 90% v ge 90% -25 0 25 50 75 100 125 -0,2 0 0,2 0,4 0,6 0,8 time (us) % t doff t eoff v ce i c v ge i c 10% v ge 10% t don v ce 5% -50 0 50 100 150 200 250 3,9 4 4,1 4,2 4,3 4,4 time(us) % i c v ce t eon v ge fitted i c10% i c 90% i c 60% i c 40% -25 0 25 50 75 100 125 0,1 0,15 0,2 0,25 0,3 0,35 0,4 time (us) % v ce i c t f i c 10% i c 90% -50 0 50 100 150 200 250 4 4,05 4,1 4,15 4,2 4,25 4,3 time(us) % t r v ce i c c opyright by vincotech 23 revision: 1
10-fy12nma080sh-m427f 10-py12nma080sh-m427f y preliminary datasheet figure 5 half bridge igbt figure 6 half bridge igbt turn-off switching waveforms & definition of t eof f turn-on switching waveforms & definition of t eon p off (100%) = 35,18 kw p on (100%) = 35,18 kw e off (100%) = 2,00 mj e on (100%) = 1,64 mj t eoff = 0,61 s t eon = 0,28 s figure 7 half bridge igbt figure 8 neutral point fwd gate voltage vs gate charge (measured) turn-off switching waveforms & definition of t r r v geoff = -15 v v d (100%) = 700 v v geon = 15 v i d (100%) = 50 a v c (100%) = 700 v i rrm (100%) = -56 a i c (100%) = 50 a t rr = 0,12 s q g = 546,28 nc switching definitions half bridge igbt i c 1% v ge 90% -25 0 25 50 75 100 125 -0,2 0 0,2 0,4 0,6 0,8 time (us) % p off e off t eoff v ce3% v ge10% -25 0 25 50 75 100 125 3,9 4 4,1 4,2 4,3 4,4 time(us) % p on e on t eon i rrm 10% i rrm 90% i rrm 100% t rr -150 -100 -50 0 50 100 150 4,1 4,15 4,2 4,25 4,3 4,35 time(us) % i d v d fitted -20 -15 -10 -5 0 5 10 15 20 -100 0 100 200 300 400 500 600 qg (nc) v ge (v) c opyright by vincotech 24 revision: 1
10-fy12nma080sh-m427f 10-py12nma080sh-m427f y preliminary datasheet figure 9 neutral point fwd figure 10 neutral point fwd turn-on switching waveforms & definition of t qr r turn-on switching waveforms & definition of t erec (t qrr = integrating time for q r r )( t erec = integrating time for e rec ) i d (100%) = 50 a p rec (100%) = 35,18 kw q rr (100%) = 2,73 c e rec (100%) = 0,41 mj t qrr = 0,23 s t erec = 0,23 s figure 111 half bridge igbt half bridge switching measurement circuit switching definitions half bridge fwd t qrr -150 -100 -50 0 50 100 150 4,1 4,15 4,2 4,25 4,3 4,35 4,4 time(us) % i d q r r -25 0 25 50 75 100 125 4,1 4,15 4,2 4,25 4,3 4,35 4,4 time(us) % p rec e rec t erec c opyright by vincotech 25 revision: 1
10-fy12nma080sh-m427f 10-py12nma080sh-m427f y preliminary datasheet t j 125 c r g on 8 ? r goff 8 ? figure 1 neutral point igbt figure 2 neutral point igbt turn-off switching waveforms & definition of t dof f , t eof f turn-on switching waveforms & definition of t don , t eon (t eof f = integrating time for e of f )( t eon = integrating time for e on ) v ge (0%) = -15 v v ge (0%) = -15 v v ge (100%) = 15 v v ge (100%) = 15 v v c (100%) = 700 v v c (100%) = 700 v i c (100%) = 50 a i c (100%) = 50 a t doff = 0,10 s t don = 0,15 s t eoff = 0,17 s t eon = 0,12 s figure 3 neutral point igbt figure 4 neutral point igbt turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 700 v v c (100%) = 700 v i c (100%) = 50 a i c (100%) = 50 a t f = 0,119 s t r = 0,024 s switching definitions neutral point igbt general conditions = = = i c 10% v ge 10% t don v ce 3% -50 0 50 100 150 200 250 3,9 4 4,1 4,2 4,3 time(us) % i c v ce t eon v ge i c 1% v ce 90% v ge 90% -25 0 25 50 75 100 125 -0,2 0 0,2 0,4 0,6 0,8 time (us) % t doff t eoff v ce i c v ge fitted i c 10% i c 90% i c 60% i c 40% -25 0 25 50 75 100 125 0,0 0,1 0,2 0,3 0,4 0,5 time (us) % v ce i c t f i c 10% i c 90% -50 0 50 100 150 200 250 4,1 4,15 4,2 4,25 4,3 time(us) % t r v ce i c c opyright by vincotech 26 revision: 1
10-fy12nma080sh-m427f 10-py12nma080sh-m427f y preliminary datasheet figure 5 neutral point igbt figure 6 neutral point igbt turn-off switching waveforms & definition of t eof f turn-on switching waveforms & definition of t eon p off (100%) = 34,87 kw p on (100%) = 34,8684 kw e off (100%) = 2,32 mj e on (100%) = 0,38 mj t eoff = 0,17 s t eon = 0,12 s figure 7 neutral point igbt figure 8 half bridge fwd gate voltage vs gate charge (measured) turn -off switching waveforms & definition of t r r v geoff = -15 v v d (100%) = 700 v v geon = 15 v i d (100%) = 50 a v c (100%) = 700 v i rrm (100%) = -61 a i c (100%) = 50 a t rr = 0,04 s q g = 3441,54 nc switching definitions neutral point igbt i c 1% u ge90% -25 0 25 50 75 100 125 -0,2 0 0,2 0,4 0,6 time (us) % p off e off t eoff u ce 3% u ge10% -20 10 40 70 100 130 3,9 4 4,1 4,2 4,3 time(us) % p on e on t eon -15 -10 -5 0 5 10 15 20 -200 0 200 400 600 800 1000 qg (nc) u ge (v) i rrm 10% i rrm 90% i rrm 100% t rr -200 -150 -100 -50 0 50 100 150 4,1 4,2 4,3 4,4 4,5 time(us) % i d u d fitted c opyright by vincotech 27 revision: 1
10-fy12nma080sh-m427f 10-py12nma080sh-m427f y preliminary datasheet figure 9 half bridge fwd figure 10 half bridge fwd turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr )( t erec = integrating time for e rec ) i d (100%) = 50 a p rec (100%) = 34,87 kw q rr (100%) = 6,56 c e rec (100%) = 1,72 mj t qint = 0,09 s t erec = 0,09 s figure 11 neutral point igbt switching measurement circuit switching definitions neutral point igbt t qint -150 -100 -50 0 50 100 150 4,1 4,2 4,3 4,4 4,5 4,6 time(us) % i d q rr -25 0 25 50 75 100 125 4,1 4,2 4,3 4,4 4,5 4,6 time(us) % p rec e rec t erec c opyright by vincotech 28 revision: 1
10-fy12nma080sh-m427f 10-PY12NMA080SH-M427FY preliminary datasheet ordering code & marking version ordering code in datamatrix as in packaging barcode as without thermal paste 12mm housing 10-fy12nma080sh-m427f m427f m427f without thermal paste 12mm housing with pressfit pin 10-PY12NMA080SH-M427FY m427fy m427fy ordering code and marking - outline - pinout outline pinout c opyright by vincotech 29 revision: 1
10-fy12nma080sh-m427f 10-PY12NMA080SH-M427FY preliminary datasheet product status definitions formative or in design first production full production disclaimer life support policy as used herein: preliminary this datasheet contains preliminary data, and supplementary data may be published at a later date. vincotech reserves the right to make changes at any time without notice in order to improve design. the data contained is exclusively intended for technically trained staff. final this datasheet contains final specifications. vincotech reserves the right to make changes at any time without notice in order to improve design. the data contained is exclusively intended for te chnically tr ained st aff. target product status datasheet status definition this datasheet contains the design specifications for product development. specific ations may change in any manner without notice. the dat a contained is exclusively intended for technica lly trai ned staff. the information given in this datasheet describes the type of component and does not represent assured characteristics. for tes ted values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to i mprove reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product o r circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express wri tten approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. c opyright by vincotech 30 revision: 1


▲Up To Search▲   

 
Price & Availability of 10-PY12NMA080SH-M427FY

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X